Zinc oxide nanoparticles: Physiological and biochemical responses in barley (Hordeum vulgare L.)

Marina VOLOSHINA, Vishnu D. RAJPUT, Tatiana MINKINA, Evgeniy VECHKANOV, Saglara MANDZHIEVA, Mahmoud MAZARJI, Ella CHURYUKINA, Andrey PLOTNIKOV, Maria KREPAKOVA, Ming Hung WONG

Research output: Contribution to journalArticlespeer-review

14 Citations (Scopus)

Abstract

This work aimed to study the toxic implications of zinc oxide nanoparticles (ZnO NPs) on the physio-biochemical responses of spring barley (Hordeum sativum L.). The experiments were designed in a hydroponic system, and H. sativum was treated with two concentrations of ZnO NPs, namely 300 and 2000 mg/L. The findings demonstrated that ZnO NPs prevent the growth of H. sativum through the modulation of the degree of oxidative stress and the metabolism of antioxidant enzymes. The results showed increased malondialdehyde (MDA) by 1.17- and 1.69-fold, proline by 1.03- and 1.09-fold, and catalase (CAT) by 1.4- and 1.6-fold in shoots for ZnO NPs at 300 and 2000 mg/L, respectively. The activity of superoxide dismutase (SOD) increased by 2 and 3.3 times, ascorbate peroxidase (APOX) by 1.2 and 1.3 times, glutathione-s-transferase (GST) by 1.2 and 2.5 times, and glutathione reductase (GR) by 1.8 and 1.3 times in roots at 300 and 2000 mg/L, respectively. However, the level of δ-aminolevulinic acid (ALA) decreased by 1.4 and 1.3 times in roots and by 1.1 times in both treatments (nano-300 and nano-2000), respectively, indicating changes in the chlorophyll metabolic pathway. The outcomes can be utilized to create a plan of action for plants to withstand the stress brought on by the presence of NPs. Copyright © 2022 by the authors.
Original languageEnglish
Article number2759
JournalPlants
Volume11
Issue number20
DOIs
Publication statusPublished - 02 Oct 2022

Citation

Voloshina, M., Rajput, V. D., Minkina, T., Vechkanov, E., Mandzhieva, S., Mazarji, M., . . . Wong, M. H. (2022). Zinc oxide nanoparticles: Physiological and biochemical responses in barley (Hordeum vulgare L.). Plants, 11(20). Retrieved from https://doi.org/10.3390/plants11202759

Keywords

  • Malonic dialdehyde
  • Superoxide dismutase
  • Catalase
  • Reactive oxygen species
  • Antioxidant enzymes
  • Metabolic changes
  • Stress marker
  • ZnO NPs
  • Pollution

Fingerprint

Dive into the research topics of 'Zinc oxide nanoparticles: Physiological and biochemical responses in barley (Hordeum vulgare L.)'. Together they form a unique fingerprint.