Abstract
This paper investigates the time-consistent mean-variance reinsurance-investment (RI) problem faced by life insurers. Inspired by recent findings that mortality rates exhibit long-range dependence (LRD), we examine the effect of LRD on RI strategies. We adopt the Volterra mortality model proposed in Wang et al. [(2021). Volterra mortality model: actuarial valuation and risk management with long-range dependence. Insurance: Mathematics and Economics 96, 1–14] to incorporate LRD into the mortality rate process and describe insurance claims using a compound Poisson process with intensity represented by the stochastic mortality rate. Under the open-loop equilibrium mean-variance criterion, we derive explicit equilibrium RI controls and study the uniqueness of these controls in cases of constant and state-dependent risk aversion. We simultaneously resolve difficulties arising from unbounded non-Markovian parameters and sudden increases in the insurer's wealth process. While the exiting literature suggests that LRD has a significant effect on longevity hedging, we find that reinsurance is a risk management strategy that is robust to LRD. Copyright © 2022 Informa UK Limited.
Original language | English |
---|---|
Pages (from-to) | 123-152 |
Journal | Scandinavian Actuarial Journal |
Volume | 2023 |
Issue number | 2 |
Early online date | 30 Jun 2022 |
DOIs | |
Publication status | Published - 2023 |
Citation
Wang, L., Chiu, M. C., & Wong, H. Y. (2023). Time-consistent mean-variance reinsurance-investment problem with long-range dependent mortality rate. Scandinavian Actuarial Journal, 2023(2), 123-152. doi: 10.1080/03461238.2022.2089050Keywords
- Mean-variance
- Time consistency
- Reinsurance investment
- Mortality model
- Long-range dependence