Abstract
The recent renaissance of the use of rare-earth-doped yttrium orthoaluminate as an ideal laser material has generated significant interest; however, the unique structural features underlying many of its outstanding optical properties still require elucidation. To solve this intriguing problem, we performed a systematic first-principles study; the results of the study reveal a new stable phase for Tm³⁺-doped YAlO3 (YAP), of monoclinic Pm symmetry, with an 80-atom per unit cell. An unbiased CALYPSO structure search indicates that the Tm³⁺ impurity ion tends to substitute the position of Y³⁺ in the YAP crystal lattice. Electronic band structure calculations reveal that the insulated behaviors of YAP are significantly eliminated after doping the impure Tm³⁺ ions, as evidenced by the minor energy gap of about 0.4 eV, which is close to the band gap energy of a 2 μm emitter source. On the basis of our developed crystal-field theory method, the 4f¹² electronic structures and energies of Tm3+ ions in the YAP crystal are calculated. The theoretical results indicate that the electric-dipole-induced transition ³H₄ → ³H₅ is mainly responsible for producing the light wave at approximately 2.3 μm. The present results provide an essential understanding of the rare-earth-ion-doped lasing materials and serve as a practical tool for further exploration of such materials. Copyright © 2016 American Chemical Society.
Original language | English |
---|---|
Pages (from-to) | 30422-30429 |
Journal | ACS Applied Materials and Interfaces |
Volume | 8 |
Issue number | 44 |
Early online date | Oct 2016 |
DOIs | |
Publication status | Published - 2016 |
Citation
Ju, M., Lu, C., Yeung, Y., Kuang, X., Wang, J., & Zhu, Y. (2016). Structural evolutions and crystal field characterizations of tm-doped YAlO₃: New theoretical insights. ACS Applied Materials and Interfaces, 8(44), 30422-30429.Keywords
- Crystal field theory
- Crystal structures
- Electric dipole transitions
- First-principle calculations