Strongly singular Calderón–Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces

Research output: Contribution to journalArticlespeer-review

1 Citation (Scopus)

Abstract

We obtain the mapping properties of the strongly singular Calderón–Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces. We established this result by using the idea from extrapolation originated from Rubio de Francia. As applications of this result, we present the mapping properties of the strongly singular Calderón–Zygmund operators to the Hardy Orlicz-slice spaces, the Hardy local Morrey spaces with variable exponents and the Herz–Hardy spaces with variable exponents. Copyright © 2023 The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Original languageEnglish
Article number67
JournalAnalysis and Mathematical Physics
Volume13
DOIs
Publication statusPublished - Jul 2023

Citation

Ho, K.-P. (2023). Strongly singular Calderón–Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces. Analysis and Mathematical Physics, 13, Article 67. https://doi.org/10.1007/s13324-023-00831-9

Keywords

  • Singular integral operators
  • Calderón–Zygmund operators
  • Hardy spaces
  • Ball quasi-Banach function spaces
  • Slice spaces
  • Local Morrey spaces
  • Herz spaces

Fingerprint

Dive into the research topics of 'Strongly singular Calderón–Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces'. Together they form a unique fingerprint.