Abstract
We obtain the mapping properties of the strongly singular Calderón–Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces. We established this result by using the idea from extrapolation originated from Rubio de Francia. As applications of this result, we present the mapping properties of the strongly singular Calderón–Zygmund operators to the Hardy Orlicz-slice spaces, the Hardy local Morrey spaces with variable exponents and the Herz–Hardy spaces with variable exponents. Copyright © 2023 The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Original language | English |
---|---|
Article number | 67 |
Journal | Analysis and Mathematical Physics |
Volume | 13 |
DOIs | |
Publication status | Published - Jul 2023 |
Citation
Ho, K.-P. (2023). Strongly singular Calderón–Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces. Analysis and Mathematical Physics, 13, Article 67. https://doi.org/10.1007/s13324-023-00831-9Keywords
- Singular integral operators
- Calderón–Zygmund operators
- Hardy spaces
- Ball quasi-Banach function spaces
- Slice spaces
- Local Morrey spaces
- Herz spaces