Abstract
With the rapid development of power grid, prediction of electric quantity changes has become increasingly important. High-performance power grid systems can improve economic effectiveness and operational efficiency through accurate prediction. This paper proposes a prediction model based on temperature, humidity, time, and the number of people. On account of the standards of support vector machine (SVM) and the HBase platform, we have implemented a forecasting model and designed simulative experiments. The experimental results show that time and variation in the number of people has a remarkable influence on prediction, while temperature and humidity hardly have any effects.
Original language | English |
---|---|
Publication status | Published - Dec 2016 |
Event | The 2016 IEEE International Conference on Progress in Informatics and Computing - Shanghai, China Duration: 23 Dec 2016 → 25 Dec 2016 |
Conference
Conference | The 2016 IEEE International Conference on Progress in Informatics and Computing |
---|---|
Abbreviated title | PIC 2016 |
Country/Territory | China |
City | Shanghai |
Period | 23/12/16 → 25/12/16 |
Citation
Yang, H., Li, P., Masood, A., Xiao, Y., Sheng, B., & Yu, Q. (2016, December). Smart grid data analysis and prediction modeling. Paper presented at The 2016 IEEE International Conference on Progress in Informatics and Computing (PIC-2016), Shanghai Guang Dong Hotel, Shanghai, China.Keywords
- Power prediction
- Data mining
- HBase data storage
- Machine learning
- SVM