Singular integrals and sublinear operators on amalgam spaces and Hardy-amalgam spaces

Research output: Contribution to journalArticlespeer-review

Abstract

In this paper, we establish the extrapolation theory for the amalgam spaces and the Hardy-amalgam spaces. By using the extrapolation theory, we obtain the mapping properties for the Calderón-Zygmund operators and its commutator, the Carleson operators and establish the Rubio de Francia inequalities for Littlewood-Paley functions of arbitrary intervals to the amalgam spaces. We also obtain the boundedness of the Calder{ó}n-Zygmund operators and the intrinsic square function on the Hardy-amalgam spaces. Copyright © 2021 Societates Mathematicae.
Original languageEnglish
JournalMathematica Scandinavica
Volume127
Issue number3
Early online date30 Nov 2021
DOIs
Publication statusPublished - 2021

Citation

Ho, K.-P. (2021). Singular integrals and sublinear operators on amalgam spaces and Hardy-amalgam spaces. Mathematica Scandinavica, 127(3). Retrieved from https://doi.org/10.7146/math.scand.a-128966

Fingerprint

Dive into the research topics of 'Singular integrals and sublinear operators on amalgam spaces and Hardy-amalgam spaces'. Together they form a unique fingerprint.