Single-atom engineering of covalent organic framework for photocatalytic H₂ production coupled with benzylamine oxidation

Yang XIA, Bicheng ZHU, Liuyi LI, Wing Kei HO, Jinsong WU, Haoming CHEN, Jiaguo YU

Research output: Contribution to journalArticlespeer-review

12 Citations (Scopus)

Abstract

In photocatalysis, reducing the exciton binding energy and boosting the conversion of excitons into free charge carriers are vital to enhance photocatalytic activity. This work presents a facile strategy of engineering Pt single atoms on a 2D hydrazone-based covalent organic framework (TCOF) to promote H₂ production coupled with selective oxidation of benzylamine. The optimised TCOF-Pt SA photocatalyst with 3 wt% Pt single atom exhibited superior performance to TCOF and TCOF-supported Pt nanoparticle catalysts. The production rates of H₂ and N-benzylidenebenzylamine over TCOF-Pt SA3 are 12.6 and 10.9 times higher than those over TCOF, respectively. Empirical characterisation and theoretical simulation showed that the atomically dispersed Pt is stabilised on the TCOF support through the coordinated N₁-Pt-C₂ sites, thereby induing the local polarization and improving the dielectric constant to reach the low exciton binding energy. These phenomena led to the promotion of exciton dissociation into electrons and holes and the acceleration of the separation and transport of photoexcited charge carriers from bulk to the surface. This work provides new insights into the regulation of exciton effect for the design of advanced polymer photocatalysts. Copyright © 2023 Wiley-VCH GmbH.
Original languageEnglish
Article number2301928
JournalSmall
Volume19
Issue number35
Early online dateApr 2023
DOIs
Publication statusPublished - Aug 2023

Citation

Xia, Y., Zhu, B., Li, L., Ho, W., Wu, J., Chen, H., & Yu, J. (2023). Single-atom engineering of covalent organic framework for photocatalytic H₂ production coupled with benzylamine oxidation. Small, 19(35), Article 2301928. https://doi.org/10.1002/smll.202301928

Fingerprint

Dive into the research topics of 'Single-atom engineering of covalent organic framework for photocatalytic H₂ production coupled with benzylamine oxidation'. Together they form a unique fingerprint.