Shortest node-disjoint paths on random graphs

BACCO Caterina DE, Silvio FRANZ, David SAAD, Chi Ho YEUNG

Research output: Contribution to journalArticles

5 Citations (Scopus)

Abstract

A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process global information and distribute paths optimally. Statistical properties such as scaling with system size and number of paths, average path-length and the transition to the frustrated regime are analyzed. The performance of the suggested algorithm is evaluated through a comparison against a greedy algorithm. Copyright © 2014 IOP Publishing Ltd and SISSA Medialab srl.
Original languageEnglish
Article numberP07009
JournalJournal of Statistical Mechanics: Theory and Experiment
Volume2014
DOIs
Publication statusPublished - Jul 2014

Citation

De Bacco, C., Franz, S., Saad, D., & Yeung, C. H. (2014). Shortest node-disjoint paths on random graphs. Journal of Statistical Mechanics: Theory and Experiment, 2014. Retrieved from http://dx.doi.org/10.1088/1742-5468/2014/07/P07009

Keywords

  • Cavity and replica method
  • Optimization over networks
  • Message-passing algorithms

Fingerprint Dive into the research topics of 'Shortest node-disjoint paths on random graphs'. Together they form a unique fingerprint.