Abstract
As an important medium used to describe events, the short text is effective to convey emotions and communicate affective states. In this paper, we proposed a classification method based on probabilistic topic model, which greatly improve the performance of sentimental categorization methods on short text. To solve the problems of sparsity and context-dependency, we extract hidden topics behind the text and associate different words by the same topic. Evaluation on sentiment detection of short text verified the effectiveness of the proposed method. Copyright © 2015 Springer International Publishing Switzerland.
Original language | English |
---|---|
Title of host publication | Database systems for advanced applications: DASFAA 2015 International Workshops, SeCoP, BDMS, and posters, Hanoi, Vietnam, April 20-23, 2015, revised selected papers |
Editors | An LIU, Yoshiharu ISHIKAWA, Tieyun QIAN, Sarana NUTANONG, Muhammad Aamir CHEEMA |
Place of Publication | Cham |
Publisher | Springer |
Pages | 76-85 |
ISBN (Electronic) | 9783319223247 |
ISBN (Print) | 9783319223230 |
DOIs | |
Publication status | Published - 2015 |
Citation
Wu, Z., Rao, Y., Li, X., Li, J., Xie, H., & Wang, F. L. (2015). Sentiment detection of short text via probabilistic topic modeling. In A. Liu, Y. Ishikawa, T. Qian, S. Nutanong, & M. A. Cheema (Eds.), Database systems for advanced applications: DASFAA 2015 International Workshops, SeCoP, BDMS, and posters, Hanoi, Vietnam, April 20-23, 2015, revised selected papers (pp. 76-85). Cham: Springer.Keywords
- Short text classification
- Sentiment detection
- Topic-based similarity