Porosity of roadside soil as indicator of edaphic quality for tree planting

Research output: Contribution to conferencePaper

Abstract

Roadside tree pits commonly suffer from small size, poor soil, and heavy compaction. Their three soil types with different properties, respectively site soil, backfill and rootball, could constrain tree establishment and long-term growth. Sixty-nine soil samples were taken from 19 tree pits, with multiple artificial layers sampled separately, at roadside sites in Hong Kong. They were analyzed for profile characteristics, pH, bulk density and particle-size distributions. Pores were divided by into three classes: (1) unavailable moisture UM at <0.2 μm (also known as micro-pores); (2) available water AW at 0.2–60 μm (meso-pores); and (3) and air capacity AC at >60 μm (macro-pores). Critical pore-volume thresholds, namely extreme, marginal and optimal, assessed soil-porosity quality. Site soils were heavily compacted with <40% and <30% total porosity, denoting respectively marginal and extreme thresholds, with equivalent to bulk density exceeding 1.6 and 1.9 Mg/m3. The upper soil zone was more compacted than middle and lower zones to generate undesirable surface-sealing. Backfill and rootball soils had less stressful porosity and bulk density limitations. Initial tree establishment explored more amenable backfill, but long-term root growth into site soil would be hampered, with implications on tree health and stability. The excessively sandy texture, upon compaction to a certain degree, allowed generation of a continuous coarse matrix. It established intergranular contacts and high load-bearing capacity to arrest further compaction. AW pores could thus be sustained for available-water storage to support tree growth. The findings could inform porosity specification in urban soil management to foster roadside tree performance. Copyright © 2018 WFUF.
Original languageEnglish
Publication statusPublished - Nov 2018

Fingerprint

tree planting
porosity
backfill
soil
bulk density
compaction
indicator
macropore
soil management
sealing
water storage
soil type
texture
particle size
moisture
matrix

Bibliographical note

Jim, C. Y. (2018, November). Porosity of roadside soil as indicator of edaphic quality for tree planting. Paper presented at the World Forum on Urban Forests(WFUF 2018), Mantova, Italy.

Keywords

  • Urban soil compaction
  • Soil quality deficit
  • Pore size distribution
  • Critical pore-volume threshold
  • Continuous coarse matrix principle