Abstract
This article considers fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity, which combines the popular generalized autoregressive conditional heteroscedastic (GARCH) and the fractional (ARMA) models. The fractional differencing parameter d can be greater than 1/2, thus incorporating the important unit root case. Some sufficient conditions for stationarity, ergodicity, and existence of higher-order moments are derived. An algorithm for approximate maximum likelihood (ML) estimation is presented. The asymptotic properties of ML estimators, which include consistency and asymptotic normality, are discussed. The large-sample distributions of the residual autocorrelations and the square-residual autocorrelations are obtained, and two portmanteau test statistics are established for checking model adequacy. In particular, non-stationary FARIMA(p, d, q)-GARCH(r, s) models are also considered. Some simulation results are reported. As an illustration, the proposed model is also applied to the daily returns of the Hong Kong Hang Seng index (1983–1984). Copyright © 1997 American Statistical Association.
Original language | English |
---|---|
Pages (from-to) | 1184-1194 |
Journal | Journal of the American Statistical Association |
Volume | 92 |
Issue number | 439 |
DOIs | |
Publication status | Published - 1997 |
Citation
Ling, S., & Li, W. K. (1997). On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity. Journal of the American Statistical Association, 92(439), 1184-1194. doi: 10.1080/01621459.1997.10474076Keywords
- Fractional differencing
- Maximum likelihood estimation
- Portmanteau tests
- Stationarity and ergodicity