Abstract
Multi-relation embedding is a popular approach to knowledge base completion that learns embedding representations of entities and relations to compute the plausibility of missing triplet. The effectiveness of embedding approach depends on the sparsity of KB and falls for infrequent entities that only appeared a few times. This paper addresses this issue by proposing a new model exploiting the entity-independent transitive relation patterns, namely Transitive Relation Embedding (TRE). The TRE model alleviates the sparsity problem for predicting on infrequent entities while enjoys the generalisation power of embedding. Experiments on three public datasets against seven baselines showed the merits of TRE in terms of knowledge base completion accuracy as well as computational complexity. Copyright © 2019 Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Original language | English |
---|---|
Title of host publication | Proceedings of 33rd AAAI Conference on Artificial Intelligence, AAAI 2019 |
Place of Publication | USA |
Publisher | AAAI press |
Pages | 3125-3132 |
ISBN (Electronic) | 9781577358091 |
DOIs | |
Publication status | Published - 2019 |