Motion segmentation method for hybrid characteristic on human motion

Newman LAU, Ben WONG, Hung Kay Daniel CHOW

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Motion segmentation and analysis are used to improve the process of classification of motion and information gathered on repetitive or periodic characteristic. The classification result is useful for ergonomic and postural safety analysis, since repetitive motion is known to be related to certain musculoskeletal disorders. Past studies mainly focused on motion segmentation on particular motion characteristic with certain prior knowledge on static or periodic property of motion, which narrowed method's applicability. This paper attempts to introduce a method to tackle human joint motion without having prior knowledge. The motion is segmented by a two-pass algorithm. Recursive least square (RLS) is firstly used to estimate possible segments on the input human-motion set. Further, period identification and extra segmentation process are applied to produce meaningful segments. Each of the result segments is modeled by a damped harmonic model, with frequency, amplitude and duration produced as parameters for ergonomic evaluation and other human factor studies such as task safety evaluation and sport analysis. Experiments show that the method can handle periodic, random and mixed characteristics on human motion, which can also be extended to the usage in repetitive motion in workflow and irregular periodic motion like sport movement. Copyright © 2009 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)436-442
JournalJournal of Biomechanics
Volume42
Issue number4
DOIs
Publication statusPublished - 11 Mar 2009

    Fingerprint

Citation

Lau, N., Wong, B., & Chow, D. (2009). Motion segmentation method for hybrid characteristic on human motion. Journal of Biomechanics, 42(4), 436-442. doi: 10.1016/j.jbiomech.2008.11.038

Keywords

  • Motion segmentation
  • Repetitive motion
  • Period identification
  • Ergonomic evaluation