Modelling economic growth, carbon emissions, and fossil fuel consumption in China: Cointegration and multivariate causality

Zhihui LV, Man Ying Amanda CHU, Michael MCALEER , Wing-Keung WONG

Research output: Contribution to journalArticlespeer-review

57 Citations (Scopus)

Abstract

Most authors apply the Granger causality-VECM (vector error correction model), and Toda–Yamamoto procedures to investigate the relationships among fossil fuel consumption, CO₂ emissions, and economic growth, though they ignore the group joint effects and nonlinear behaviour among the variables. In order to circumvent the limitations and bridge the gap in the literature, this paper combines cointegration and linear and nonlinear Granger causality in multivariate settings to investigate the long-run equilibrium, short-run impact, and dynamic causality relationships among economic growth, CO₂ emissions, and fossil fuel consumption in China from 1965–2016. Using the combination of the newly developed econometric techniques, we obtain many novel empirical findings that are useful for policy makers. For example, cointegration and causality analysis imply that increasing CO₂ emissions not only leads to immediate economic growth, but also future economic growth, both linearly and nonlinearly. In addition, the findings from cointegration and causality analysis in multivariate settings do not support the argument that reducing CO₂ emissions and/or fossil fuel consumption does not lead to a slowdown in economic growth in China. The novel empirical findings are useful for policy makers in relation to fossil fuel consumption, CO₂ emissions, and economic growth. Using the novel findings, governments can make better decisions regarding energy conservation and emission reductions policies without undermining the pace of economic growth in the long run. Copyright © 2019 by the authors.
Original languageEnglish
Article number4176
JournalInternational Journal of Environmental Research and Public Health
Volume16
Issue number21
DOIs
Publication statusPublished - Oct 2019

Citation

Lv, Z., Chu, A. M. Y., McAleer, M., & Wong, W.-K. (2019). Modelling economic growth, carbon emissions, and fossil fuel consumption in China: Cointegration and multivariate causality. International Journal of Environmental Research and Public Health, 16(21). Retrieved from https://doi.org/10.3390/ijerph16214176

Keywords

  • Energy consumption
  • Economic growth
  • Gross domestic product
  • CO₂ emissions
  • Granger causality
  • China

Fingerprint

Dive into the research topics of 'Modelling economic growth, carbon emissions, and fossil fuel consumption in China: Cointegration and multivariate causality'. Together they form a unique fingerprint.