Abstract
In educational and psychological assessment, missing data often occur and usually are not ignorable. The non-ignorable missing data mechanism must be modeled to reduce the biased parameter estimates. This study aims to develop a class of cognitive diagnostic models (CDMs) to account for non-ignorable missing data. By forming a joint model for the response data and missing data, the missing mechanism can be well considered under CDMs. Simulation results showed that, parameters were recovered fairly well with missing models. Although treating missing data as ignorable did no harm in the item parameter estimation, it yielded lower correct classification rates on the latent profiles than when the missing data mechanism was properly considered.
Original language | English |
---|---|
Publication status | Published - Apr 2014 |
Event | 2014 Annual Meeting of American Educational Research Association: "The Power of Education Research for Innovation in Practice and Policy" - Philadelphia, PA, United States Duration: 03 Apr 2014 → 07 Apr 2014 https://www.aera.net/Events-Meetings/Annual-Meeting/Previous-Annual-Meetings/2014-Annual-Meeting |
Conference
Conference | 2014 Annual Meeting of American Educational Research Association: "The Power of Education Research for Innovation in Practice and Policy" |
---|---|
Abbreviated title | AERA 2014 |
Country/Territory | United States |
City | Philadelphia, PA |
Period | 03/04/14 → 07/04/14 |
Internet address |