Message-passing for inference and optimization of real variables on sparse graphs

K. Y. Michael WONG, Chi Ho YEUNG, David SAAD

Research output: Chapter in Book/Report/Conference proceedingChapters

4 Citations (Scopus)

Abstract

The inference and optimization in sparse graphs with real variables is studied using methods of statistical mechanics. Efficient distributed algorithms for the resource allocation problem are devised. Numerical simulations show excellent performance and full agreement with the theoretical results. Copyright © 2006 Springer-Verlag Berlin Heidelberg.

Original languageEnglish
Title of host publicationNeural information processing: 13th International Conference, ICONIP 2006, Hong Kong, China, October 3-6, 2006, Proceedings, Part II
EditorsIrwin KING, Jun WANG, Lai-Wan CHAN, DeLiang WANG
Place of PublicationBerlin
PublisherSpringer
Pages754-763
ISBN (Electronic)9783540464822
ISBN (Print)9783540464815
DOIs
Publication statusPublished - 2006

Citation

Wong, K. Y. M., Yeung, C. H., & Saad, D. (2006). Message-passing for inference and optimization of real variables on sparse graphs. In I. King, J. Wang, L.-W. Chan, & D. Wang (Eds.), Neural information processing: 13th International Conference, ICONIP 2006, Hong Kong, China, October 3-6, 2006, Proceedings, Part II (pp. 754-763). Springer. https://doi.org/10.1007/11893257_84

Fingerprint

Dive into the research topics of 'Message-passing for inference and optimization of real variables on sparse graphs'. Together they form a unique fingerprint.