Abstract
The effective atomic numbers of composites and Rayleigh-to-Compton cross-section ratio of elements, in the range 6 ≤ Z ≤ 82 for 145 keV gamma photons, are determined experimentally. An HPGe (high purity germanium) semiconductor detector is placed, at scattering angle of 90°, to record the spectra originating from interactions of incident gamma photons with the target under investigations. The intensity ratio of Rayleigh-to-Compton scattered peaks, corrected for photo-peak efficiency of gamma detector and absorption of photons in the target and air column, is plotted as a function of atomic number and a best fit-curve is constituted. From this fit-curve, the respective effective atomic numbers of the scientific samples are determined. The measured values of cross-section ratio increases non-linearly with increase in atomic number and are found to agree with theoretical predictions based upon non-relativistic form factor, relativistic form factor, modified form factor and S-matrix theory. Copyright © 2014 Akadémiai Kiadó, Budapest, Hungary.
Original language | English |
---|---|
Pages (from-to) | 187-194 |
Journal | Journal of Radioanalytical and Nuclear Chemistry |
Volume | 302 |
Early online date | Jul 2014 |
DOIs | |
Publication status | Published - Oct 2014 |
Citation
Singh, M. P., Sharma, A., Singh, B., & Sandhu, B. S. (2014). Measurement of effective atomic number and Rayleigh-to-Compton cross-section ratio for 145 keV gamma photons. Journal of Radioanalytical and Nuclear Chemistry, 302, 187-194. doi: 10.1007/s10967-014-3282-zKeywords
- Effective atomic number
- Rayleigh and Compton scatterings
- Cross-section ratio
- Form factors