Abstract
We establish the maximal estimates for the solutions of some initial value problems on rearrangement-invariant quasi-Banach function spaces. Our result covers the cases for which the initial value problem is given by the Schrödinger equation. Copyright © 2018 Taylor & Francis Group, LLC.
Original language | English |
---|---|
Pages (from-to) | 52-64 |
Journal | Numerical Functional Analysis and Optimization |
Volume | 40 |
Issue number | 1 |
Early online date | Dec 2018 |
DOIs | |
Publication status | Published - 2019 |
Citation
Ho, K.-P. (2019). Maximal estimates of Schrödinger equations on rearrangement invariant Sobolev spaces. Numerical Functional Analysis and Optimization, 40(1), 52-64. doi: 10.1080/01630563.2018.1487977Keywords
- Banach function spaces
- Interpolation
- Martingale
- Maximal functions
- Rearrangement-invariant
- Schrödinger equations
- Sobolev spaces
- Sublinear operators