Abstract
Littlewood–Paley theory for the differential operator, ∆D = ∂2x₁∂2x₂-∂2x₃ is developed. This study leads to the introduction of a new class of Triebel–Lizorkin spaces Ḟ α,qp (D) associated with the dilation (x₁, x₂, x₃) → (2 ̌ ¹x₁, 2 ̌ ²x₂,2 ̌ ¹⁺ ̌ ² x₃),(v₁,v₂) ∈ ℤ². The corresponding atomic and molecular decompositions are obtained. A frame generated by modulations, dilations and translations is also studied. Using this result, we show that ∆D is a linear isomorphism from Ḟ α,qp (D) to Ḟ α−2,qp(D). Copyright © 2010 European Mathematical Society.
Original language | English |
---|---|
Pages (from-to) | 183-217 |
Journal | Zeitschrift fur Analysis und ihre Anwendung |
Volume | 29 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2010 |
Citation
Ho, K.-P. (2010). Littlewood–paley theory for the differential operator ∂²/∂x₁² ∂²/∂x₂² - ∂²/∂x₃². Zeitschrift fur Analysis und ihre Anwendung, 29(2), 183-217. doi: 10.4171/ZAA/1405Keywords
- Littlewood–paley theory
- Triebel–lizorkin Spaces