Littlewood–paley theory for the differential operator ∂²/∂x₁² ∂²/∂x₂² - ∂²/∂x₃²

Research output: Contribution to journalArticlespeer-review

1 Citation (Scopus)


Littlewood–Paley theory for the differential operator, ∆D = ∂2x₁∂2x₂-∂2x₃ is developed. This study leads to the introduction of a new class of Triebel–Lizorkin spaces Ḟ  α,qp   (D) associated with the dilation (x₁, x₂, x₃) → (2 ̌ ¹x₁, 2 ̌ ²x₂,2 ̌ ¹⁺ ̌ ² x₃),(v₁,v₂) ∈ ℤ². The corresponding atomic and molecular decompositions are obtained. A frame generated by modulations, dilations and translations is also studied. Using this result, we show that ∆D is a linear isomorphism from Ḟ   α,qp   (D) to Ḟ  α−2,qp(D). Copyright © 2010 European Mathematical Society.
Original languageEnglish
Pages (from-to)183-217
JournalZeitschrift fur Analysis und ihre Anwendung
Issue number2
Publication statusPublished - 2010


Ho, K.-P. (2010). Littlewood–paley theory for the differential operator ∂²/∂x₁² ∂²/∂x₂² - ∂²/∂x₃². Zeitschrift fur Analysis und ihre Anwendung, 29(2), 183-217. doi: 10.4171/ZAA/1405


  • Littlewood–paley theory
  • Triebel–lizorkin Spaces


Dive into the research topics of 'Littlewood–paley theory for the differential operator ∂²/∂x₁² ∂²/∂x₂² - ∂²/∂x₃²'. Together they form a unique fingerprint.