Linear operators, Fourier integral operators and k-plane transforms on rearrangement-invariant quasi-Banach function spaces

Research output: Contribution to journalArticles

Abstract

We establish the mapping properties of linear operators on rearrangement-invariant quasi-Banach function spaces. Our result applies to those linear operators that map Lp to Lq with p ≠ q. Therefore, it can be used to study the mapping properties of the fractional integral operators, the Fourier integral operators and the k-plane transforms on rearrangement-invariant quasi-Banach function spaces. Copyright © 2020 Springer Nature Switzerland AG.
Original languageEnglish
JournalPositivity
Early online date03 Apr 2020
DOIs
Publication statusE-pub ahead of print - 03 Apr 2020

Citation

Ho, K.-P. (2020). Linear operators, Fourier integral operators and k-plane transforms on rearrangement-invariant quasi-Banach function spaces. Positivity. Advance online publication. doi: 10.1007/s11117-020-00750-0

Keywords

  • Linear operator
  • Interpolation
  • Fourier integral operators
  • Radon transform
  • X-ray transform
  • Rearrangement-invariant quasi-Banach function spaces

Fingerprint Dive into the research topics of 'Linear operators, Fourier integral operators and k-plane transforms on rearrangement-invariant quasi-Banach function spaces'. Together they form a unique fingerprint.