Abstract
We establish the mapping properties of linear operators on rearrangement-invariant quasi-Banach function spaces. Our result applies to those linear operators that map Lp to Lq with p ≠ q. Therefore, it can be used to study the mapping properties of the fractional integral operators, the Fourier integral operators and the k-plane transforms on rearrangement-invariant quasi-Banach function spaces. Copyright © 2020 Springer Nature Switzerland AG.
Original language | English |
---|---|
Pages (from-to) | 73-96 |
Journal | Positivity |
Volume | 25 |
Issue number | 1 |
Early online date | 03 Apr 2020 |
DOIs | |
Publication status | Published - Feb 2021 |
Citation
Ho, K.-P. (2021). Linear operators, Fourier integral operators and k-plane transforms on rearrangement-invariant quasi-Banach function spaces. Positivity, 25(1), 73-96. doi: 10.1007/s11117-020-00750-0Keywords
- Linear operator
- Interpolation
- Fourier integral operators
- Radon transform
- X-ray transform
- Rearrangement-invariant quasi-Banach function spaces