Interfacial optimization of Oxygen-vacancy-induced 1D/2D CeO₂ Nanotubes/g-C₃N₄ step-scheme heterojunction with enhanced visible-light photocatalysis and mechanism insight

Lihao XIE, Dingze LU, Kiran Kumar KONDAMAREDDY, Wing Kei HO, Qiong WU, Yimei ZENG, Yuhao ZHANG, Zhennan WANG, Bang ZHAO, Jing LI, Tongtong YANG, Ning Yang, Huiqing FAN, Lianbi LI

Research output: Contribution to journalArticlespeer-review

22 Citations (Scopus)

Abstract

Oxygen-vacancy-induced one-dimensional (1D) CeO₂ nanotubes (CeNT) has successfully loaded on two-dimensional (2D) graphitic carbon nitride (g-C₃N₄) by simple methods for investigating the performance of photocatalytic degradation of sewage. The results of characterization analyses have proved that the CeNT are uniformly dispersed on the surface of the g-C₃N₄ nanosheets. The electron paramagnetic resonance (EPR) spectra signal exhibited the existence of oxygen vacancies in CeNT. Photoluminescence spectra (PL), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoelectrochemical measurements demonstrated that the appropriate amount of CeNT (28 mg) can effectively improve the separation efficiency of photogenerated charge carriers and the photoresponse property of the samples. The rhodamine B (RhB) degradation experiments verify the same results that the photocatalytic degradation efficiency of the samples for RhB increased initially, followed by a decreased, meanwhile the degradation activity didn’t decrease prominently after four circles. Also, the reactive species trapping experiment indicated that the holes (h⁺) and superoxide radicals (∙O₂⁻) played major role in the photocatalytic reaction. Finally, the enhanced photocatalytic performance can be attributed to the synergistic effects of the oxygen vacancies in CeNT and a new charge transfer mechanisms of Step-scheme heterojunction for electron separation, which could provide a new green solution for photocatalytic sewage treatment. Copyright © 2022 Elsevier B.V. All rights reserved.
Original languageEnglish
Article number166330
JournalJournal of Alloys and Compounds
Volume923
Early online date16 Jul 2022
DOIs
Publication statusPublished - 25 Nov 2022

Citation

Xie, L., Lu, D., Kondamareddy, K. K., Ho, W., Wu, Q., Zeng, Y., . . . Li, L. (2022). Interfacial optimization of Oxygen-vacancy-induced 1D/2D CeO₂ Nanotubes/g-C₃N₄ step-scheme heterojunction with enhanced visible-light photocatalysis and mechanism insight. Journal of Alloys and Compounds, 923. Retrieved from https://doi.org/10.1016/j.jallcom.2022.166330

Keywords

  • CeO₂ nanotubes
  • 1D/2D
  • CeNT/g-C₃N₄
  • Oxygen-vacancy-induced
  • Step-scheme

Fingerprint

Dive into the research topics of 'Interfacial optimization of Oxygen-vacancy-induced 1D/2D CeO₂ Nanotubes/g-C₃N₄ step-scheme heterojunction with enhanced visible-light photocatalysis and mechanism insight'. Together they form a unique fingerprint.