Highly efficient remediation of decabromodiphenyl ether-contaminated soil using mechanochemistry in the presence of additive and its mechanism

Yunqiang YI, Fangying KOU, Po Keung Eric TSANG, Zhanqiang FANG

Research output: Contribution to journalArticlespeer-review

16 Citations (Scopus)

Abstract

Mechanochemistry has been proved to be an effective method to remediation of organic-contaminated sites. However, the high ball-to-powder mass ratio (CR) limits the large-scale application of mechanochemistry. In this study, co-milling additives were introduced to enhance the mechanochemical degradation of decabromodiphenyl ether (BDE209)-contaminated soil under the condition of low CR. Based on additive screening experiments, sodium borohydride was selected as the ideal additive to assist the mechanochemical degradation of BDE209, and the resulting removal efficiency was approximately 100% with 2 h of ball milling at a rotational speed of 550 rpm. The main degradation intermediates and degradation pathway of BDE209 were identified using gas chromatography-tandem mass spectrometry. It was proposed that the degradation of BDE209 by sodium borohydride-assisted mechanochemistry was a concurrent process of stepwise and multistage debromination. Meanwhile, the meta-bromine atom in BDE209 was more susceptible to debromination than those at the para and ortho positions. The evolution of the concentration of Br was monitored by ion chromatography, which revealed that reduction and oxidation both occurred in the removal of BDE209. This paper provides a new perspective for reducing the CR in the mechanochemical remediation of BDE209-contaminated soil. Copyright © 2021 Elsevier Ltd. All rights reserved.

Original languageEnglish
Article number113595
JournalJournal of Environmental Management
Volume299
Early online dateAug 2021
DOIs
Publication statusPublished - Dec 2021

Citation

Yi, Y., Kou, F., Tsang, P. E., & Fang, Z. (2021). Highly efficient remediation of decabromodiphenyl ether-contaminated soil using mechanochemistry in the presence of additive and its mechanism. Journal of Environmental Management, 299. Retrieved from https://doi.org/10.1016/j.jenvman.2021.113595

Keywords

  • Ball milling
  • Decabromodiphenyl ether
  • Ball-to-powder
  • Sodium borohydride
  • Organic-contaminated site

Fingerprint

Dive into the research topics of 'Highly efficient remediation of decabromodiphenyl ether-contaminated soil using mechanochemistry in the presence of additive and its mechanism'. Together they form a unique fingerprint.