Abstract
Three-dimensional hierarchical Al₂O₃@ZnO core-shell composite was designed and fabricated by a multistep strategy, involving an initial hydrothermal reaction, a subsequent chemical bath deposition process and a final calcination treatment. Electron microscopy images revealed that the Al₂O₃@ZnO composite was uniform in size and possessed a structure constituted by an Al₂O₃ core and a shell of crumpled ZnO nanosheets on which numerous pores were found. The as-synthesized Al₂O₃@ZnO core-shell composite exhibited fast kinetics and outstanding adsorption capacity for Congo red (CR) due to its unique structure and highly porous texture, which was much superior to those of bare Al₂O₃ core and ZnO microspheres. The pseudo-second-order kinetic model could represent the adsorption kinetics for CR adsorption, whereas the Langmuir isotherm model was suitable for describing the adsorption isotherm. The as-synthesized hierarchical Al₂O₃@ZnO microfibres with maximal adsorption capacity of 714 mg g⁻¹ are highly competitive in terms of CR adsorption. Copyright © 2018 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 251-260 |
Journal | Applied Surface Science |
Volume | 473 |
Early online date | Dec 2018 |
DOIs | |
Publication status | Published - Apr 2019 |
Citation
Zheng, Y., Liu, J., Cheng, B., You, W., Ho, W., & Tang, H. (2019). Hierarchical porous Al₂O₃@ ZnO core-shell microfibres with excellent adsorption affinity for Congo red molecule. Applied Surface Science, 473, 251-260. doi: 10.1016/j.apsusc.2018.12.106Keywords
- Hierarchical
- Highly porous
- ZnO nanosheets
- Adsorption