Hardy–Littlewood maximal function on Lorentz–Herz spaces

Research output: Contribution to journalArticlespeer-review

Abstract

This paper extends the study of the generalized Lorentz spaces to the Lorentz–Herz spaces. The Lorentz–Herz spaces consist of all Lebesgue measurable functions such that theirs non-increasing rearrangements belong to the weighted Herz space. The main result of this paper establishes the mapping properties of the Hardy–Littlewood maximal function on the Lorentz–Herz spaces. Copyright © 2024 The Author(s).

Original languageEnglish
Pages (from-to)561-572
JournalArabian Journal of Mathematics
Volume13
Early online dateSept 2024
DOIs
Publication statusPublished - Dec 2024

Citation

Ho, K.-P. (2024). Hardy–Littlewood maximal function on Lorentz–Herz spaces. Arabian Journal of Mathematics, 13, 561-572. https://doi.org/10.1007/s40065-024-00472-1

Fingerprint

Dive into the research topics of 'Hardy–Littlewood maximal function on Lorentz–Herz spaces'. Together they form a unique fingerprint.