Group-antimagic labelings of graphs

Wai Hong CHAN, Richard M. LOW, Wai Chee SHIU

Research output: Contribution to journalArticlespeer-review

Abstract

Let A be a non-trivial abelian group. A connected simple graph G=(V,E) is A-antimagic if there exists an edge labeling f:E(G)→A∖{0} such that the induced vertex labeling f ⁺ :V(G)→A, defined by f ⁺ (v)=∑{f(u,v):(u,v)∈E(G)}, is a one-to-one map. In this paper, we analyze the group-antimagic property for various classes of graphs. Copyright © 2013 Utilitas Mathematica Publishing Inc.

Original languageEnglish
Pages (from-to)21-31
JournalCongressus Numerantium
Volume217
Publication statusPublished - Jan 2013

Citation

Chan, W. H., Low, R. M., & Shiu, W. C. (2013). Group-antimagic labelings of graphs. Congressus Numerantium, 217, 21-31.

Keywords

  • Group-magic graph
  • Antimagic graph

Fingerprint

Dive into the research topics of 'Group-antimagic labelings of graphs'. Together they form a unique fingerprint.