Abstract
Let A be a non-trivial abelian group. A connected simple graph G=(V,E) is A-antimagic if there exists an edge labeling f:E(G)→A∖{0} such that the induced vertex labeling f ⁺ :V(G)→A, defined by f ⁺ (v)=∑{f(u,v):(u,v)∈E(G)}, is a one-to-one map. In this paper, we analyze the group-antimagic property for various classes of graphs. Copyright © 2013 Utilitas Mathematica Publishing Inc.
Original language | English |
---|---|
Pages (from-to) | 21-31 |
Journal | Congressus Numerantium |
Volume | 217 |
Publication status | Published - Jan 2013 |
Citation
Chan, W. H., Low, R. M., & Shiu, W. C. (2013). Group-antimagic labelings of graphs. Congressus Numerantium, 217, 21-31.Keywords
- Group-magic graph
- Antimagic graph