Fractional integral operators on Morrey spaces built on rearrangement-invariant quasi-Banach function spaces

Research output: Contribution to journalArticlespeer-review

1 Citation (Scopus)

Abstract

We establish the mapping properties of the fractional integral operators on Morrey spaces built on rearrangement-invariant quasi-Banach function spaces. As applications of our main result, we have the mapping properties of the Riemann-Liouville fractional integral and the Weyl fractional integral on Morrey spaces built on rearrangement-invariant quasi-Banach function spaces. We also give an application of our main result on Orlicz-Morrey spaces. Copyright © 2023 The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Original languageEnglish
Article number26
JournalPositivity
Volume27
DOIs
Publication statusPublished - Mar 2023

Citation

Ho, K.-P. (2023). Fractional integral operators on Morrey spaces built on rearrangement-invariant quasi-Banach function spaces. Positivity, 27. Retrieved from https://doi.org/10.1007/s11117-023-00976-8

Keywords

  • Fractional integral operators
  • Morrey spaces
  • Rearrangement-invariant
  • Banach function spaces

Fingerprint

Dive into the research topics of 'Fractional integral operators on Morrey spaces built on rearrangement-invariant quasi-Banach function spaces'. Together they form a unique fingerprint.