Fourier-type transforms on rearrangement-invariant quasi-Banach function spaces

Research output: Contribution to journalArticlespeer-review

17 Citations (Scopus)

Abstract

We establish the mapping properties of Fourier-type transforms on rearrangement-invariant quasi-Banach function spaces. In particular, we have the mapping properties of the Laplace transform, the Hankel transforms, the Kontorovich-Lebedev transform and some oscillatory integral operators. We achieve these mapping properties by using an interpolation functor that can explicitly generate a given rearrangement-invariant quasi-Banach function space via Lebesgue spaces. Copyright © 2018 Glasgow Mathematical Journal Trust.
Original languageEnglish
Pages (from-to)231-248
JournalGlasgow Mathematical Journal
Volume61
Issue number1
Early online date20 Jun 2018
DOIs
Publication statusPublished - Jan 2019

Citation

Ho, K.-P. (2019). Fourier-type transforms on rearrangement-invariant quasi-Banach function spaces. Glasgow Mathematical Journal, 61(1), 231-248. doi: 10.1017/S0017089518000186

Fingerprint

Dive into the research topics of 'Fourier-type transforms on rearrangement-invariant quasi-Banach function spaces'. Together they form a unique fingerprint.