Fourier integrals and sobolev imbedding on rearrangement invariant quasi-banach function spaces

Research output: Contribution to journalArticles

17 Citations (Scopus)

Abstract

We extend the mapping properties for the fractional integral operators, the convolution operators, the Fourier integral operators and the oscillatory integral operators to rearrangement-invariant quasi-Banach function spaces. We also generalize the Fourier restriction theorem and the Sobolev embedding theorem to rearrangement-invariant quasi-Banach function spaces. We obtain the above results by introducing two families of rearrangement-invariant quasi-Banach function spaces. Furthermore, these two families of rearrangement-invariant quasi-Banach function spaces also give us some embedding and interpolation results of Triebel-Lizorkin type spaces and Hardy type spaces built on rearrangement-invariant quasi-Banach function spaces. © 2016, Annales Academiæ Scientiarum Fennicæ Mathematica.
Original languageEnglish
Pages (from-to)897-922
JournalAnnales Academiæ Scientiarum Fennicæ Mathematica
Volume41
DOIs
Publication statusPublished - 2016

Citation

Ho, K.-P. (2016). Fourier integrals and sobolev imbedding on rearrangement invariant quasi-banach function spaces. Annales Academiæ Scientiarum Fennicæ Mathematica, 41, 897-922. doi: 10.5186/aasfm.2016.4157

Keywords

  • Fourier integral operator
  • Sobolev embedding
  • Oscillatory integrals
  • Hausdorff-Young inequalities
  • Restriction theorem
  • Rearrangement-invariant
  • Quasi-Banach function spaces
  • interpolation of operators
  • Triebel-Lizorkin spaces
  • Hardy spaces

Fingerprint Dive into the research topics of 'Fourier integrals and sobolev imbedding on rearrangement invariant quasi-banach function spaces'. Together they form a unique fingerprint.