Abstract
We extend the mapping properties for the fractional integral operators, the convolution operators, the Fourier integral operators and the oscillatory integral operators to rearrangement-invariant quasi-Banach function spaces. We also generalize the Fourier restriction theorem and the Sobolev embedding theorem to rearrangement-invariant quasi-Banach function spaces. We obtain the above results by introducing two families of rearrangement-invariant quasi-Banach function spaces. Furthermore, these two families of rearrangement-invariant quasi-Banach function spaces also give us some embedding and interpolation results of Triebel-Lizorkin type spaces and Hardy type spaces built on rearrangement-invariant quasi-Banach function spaces. © 2016, Annales Academiæ Scientiarum Fennicæ Mathematica.
Original language | English |
---|---|
Pages (from-to) | 897-922 |
Journal | Annales Academiæ Scientiarum Fennicæ Mathematica |
Volume | 41 |
DOIs | |
Publication status | Published - 2016 |
Citation
Ho, K.-P. (2016). Fourier integrals and sobolev imbedding on rearrangement invariant quasi-banach function spaces. Annales Academiæ Scientiarum Fennicæ Mathematica, 41, 897-922. doi: 10.5186/aasfm.2016.4157Keywords
- Fourier integral operator
- Sobolev embedding
- Oscillatory integrals
- Hausdorff-Young inequalities
- Restriction theorem
- Rearrangement-invariant
- Quasi-Banach function spaces
- interpolation of operators
- Triebel-Lizorkin spaces
- Hardy spaces