Abstract
Modelling and forecasting covariance matrices of asset returns play a crucial role in many financial fields, such as portfolio allocation and asset pricing. The availability of high-frequency intraday data enables the modelling of the realized covariance matrix directly. However, most models in the literature suffer from the curse of dimensionality, i.e. the number of parameters needed increases at the rate of the square of the number of assets. To solve the problem, we propose a factor model with a diagonal Conditional Autoregressive Wishart model for the factor realized covariance matrices. Consequently, the positive definiteness of the estimated covariance matrix is ensured with the proposed model. Asymptotic theory is derived for the estimated parameters. In the extensive empirical analysis, we find that the number of parameters can be reduced significantly; to only about one-tenth of the benchmark model. Furthermore, the proposed model maintains a comparable performance with a benchmark vector autoregressive model for different forecast horizons. Copyright © 2018 Informa UK Limited, trading as Taylor & Francis Group.
Original language | English |
---|---|
Pages (from-to) | 1879-1887 |
Journal | Quantitative Finance |
Volume | 20 |
Issue number | 11 |
Early online date | Jun 2018 |
DOIs | |
Publication status | Published - 2020 |
Citation
Shen, K., Yao, J., & Li, W. K. (2020). Forecasting high-dimensional realized volatility matrices using a factor model. Quantitative Finance, 20(11), 1879-1887. doi: 10.1080/14697688.2018.1473632Keywords
- High-dimension
- High-frequency
- Realized covariance matrices
- Factor model
- Wishart distribution