Finite-time singularity formation for the original multidimensional compressible Euler equations for generalized Chaplygin gas

Ka Luen CHEUNG, Sen WONG

Research output: Contribution to journalArticlespeer-review

4 Citations (Scopus)

Abstract

It is shown that singularity will be developed in finite time for the original (without symmetry) multidimensional compressible Euler equations for generalized Chaplygin gas if the initial momentum is sufficiently strong and an initial averaged quantity is nonnegative. Copyright © 2020 Springer Nature Switzerland AG.
Original languageEnglish
Article number62
JournalZeitschrift fur Angewandte Mathematik und Physik
Volume71
Issue number2
Early online date11 Mar 2020
DOIs
Publication statusPublished - Apr 2020

Citation

Cheung, K. L., & Wong, S. (2020). Finite-time singularity formation for the original multidimensional compressible Euler equations for generalized Chaplygin gas. Zeitschrift fur Angewandte Mathematik und Physik, 71(2). Retrieved from https://doi.org/10.1007/s00033-020-1287-8

Keywords

  • Blowup
  • Euler equations
  • Generalized Chaplygin gas
  • Multidimensional
  • Without symmetry

Fingerprint

Dive into the research topics of 'Finite-time singularity formation for the original multidimensional compressible Euler equations for generalized Chaplygin gas'. Together they form a unique fingerprint.