Abstract
High-frequency monitoring of suspended particulate matter (SPM) concentration can improve water resource management. Missing high-resolution satellite images could hamper remote-sensing SPM monitoring. This study resolved the problem by applying spatiotemporal fusion technology to obtain high spatial resolution and dense time-series data to fill image-data gaps. Three data sources (MODIS, Landsat 8, and Sentinel 2) and two spatiotemporal fusion methods (the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and the flexible spatiotemporal data fusion (FSDAF)) were used to reconstruct missing satellite images. We compared their fusion accuracy and verified the consistency of fusion images between data sources. For the fusion images, we used random forest (RF) and XGBoost as inversion methods and set “fusion first” and “inversion first” strategies to test the method’s feasibility in Ebinur Lake, Xinjiang, arid northwestern China. Our results showed that (1) the blue, green, red, and NIR bands of ESTARFM fusion image were better than FSDAF, with a good consistency (R² ≥ 0.54) between the fused Landsat 8, Sentinel 2 images, and their original images; (2) the original image and fusion image offered RF inversion effect better than XGBoost. The inversion accuracy based on Landsat 8 and Sentinel 2 were R² 0.67 and 0.73, respectively. The correlation of SPM distribution maps of the two data sources attained a good consistency of R² 0.51; (3) in retrieving SPM from fused images, the “fusion first” strategy had better accuracy. The optimal combination was ESTARFM (Landsat 8)_RF and ESTARFM (Sentinel 2)_RF, consistent with original SPM maps (R² = 0.38, 0.41, respectively). Overall, the spatiotemporal fusion model provided effective SPM monitoring under the image-absence scenario, with good consistency in the inversion of SPM. The findings provided the research basis for long-term and high-frequency remote-sensing SPM monitoring and high-precision smart water resource management. Copyright © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Original language | English |
---|---|
Article number | 3952 |
Journal | Remote Sensing |
Volume | 13 |
Issue number | 19 |
Early online date | 02 Oct 2021 |
DOIs | |
Publication status | Published - Oct 2021 |
Citation
Liu, C., Duan, P., Zhang, F., Jim, C.-Y., Tan, M. L., & Chan, N. W. (2021). Feasibility of the spatiotemporal fusion model in monitoring Ebinur Lake’s suspended particulate matter under the missing-data scenario. Remote Sensing, 13(19). Retrieved from https://doi.org/10.3390/rs13193952Keywords
- Water quality monitoring
- Suspended particulate matter
- Ebinur lake
- Spatiotemporal fusion model
- Remote-sensing data source
- Missing-data scenario