Evaluating the metropolitan public health preparedness for pandemics using entropy-TOPSIS-IF

Jin LIU, Allen Wood LIU, Xingye LI, Hui LI, Wenwei LUO, Wei CHEN

Research output: Contribution to journalArticlespeer-review

Abstract

Introduction: Metropolitan governance’s efficacy is regularly gauged by its capability for public health preparedness, a critical component, particularly in the post-pandemic climate, as global cities reassess their mitigation abilities. This process has broader implications, curbing mortality rates and amplifying sustainability. Current methodologies for preparedness assessment lean primarily on either Subjective Evaluation-Based Assessment (SBA), predicated on experts’ input on various capacity indicators, or they opt for Data-Based quantitative Assessments (DBA), chiefly utilizing public statistic data. 

Methods: The manuscript discusses an urgent need for integrating both SBA and DBA to adequately measure Metropolitan Public Health Pandemics Preparedness (MPHPP), thus proposing a novel entropy-TOPSIS-IF model for comprehensive evaluation of MPHPP. Within this proposed model, experts’ subjective communication is transformed into quantitative data via the aggregation of fuzzy decisions, while objective data is collected from public statistics sites. Shannon’s entropy and TOPSIS methods are enacted on these data sets to ascertain the optimal performer after normalization and data isotropy. 

Results and discussion: The core contribution of the entropy-TOPSIS-IF model lies in its assessment flexibility, making it universally applicable across various contexts, regardless of the availability of expert decisions or quantitative data. To illustrate the efficacy of the entropy-TOPSIS-IF model, a numerical application is presented, examining three Chinese metropolises through chosen criteria according to the evaluations of three experts. A sensitivity analysis is provided to further affirm the stability and robustness of the suggested MPHPP evaluation model. Copyright © 2024 Liu, Liu, Li, Li, Luo and Chen.

Original languageEnglish
Article number1339611
JournalFrontiers in Public Health
Volume12
Early online dateMar 2024
DOIs
Publication statusPublished - 2024

Citation

Liu, J., Liu, A. W., Li, X., Li, H., Luo, W., & Chen, W. (2024). Evaluating the metropolitan public health preparedness for pandemics using entropy-TOPSIS-IF. Frontiers in Public Health, 12, Article 1339611. https://doi.org/10.3389/fpubh.2024.1339611

Keywords

  • TOPSIS
  • Entropy-TOPSIS-IF
  • Fuzzy theory
  • Multicriteria decision making
  • Public health preparedness
  • Preparedness on pandemics

Fingerprint

Dive into the research topics of 'Evaluating the metropolitan public health preparedness for pandemics using entropy-TOPSIS-IF'. Together they form a unique fingerprint.