Evaluating the feasibility of pyrophyllite-based ceramic membranes for treating domestic wastewater in anaerobic ceramic membrane bioreactors

Yeongmi JEONG, Kyungjin CHO, Eilhann E. KWON, Yiu Fai TSANG, Jörg RINKLEBE, Chanhyuk PARK

Research output: Contribution to journalArticles

25 Citations (Scopus)

Abstract

This study laid great emphasis on anaerobic ceramic membrane bioreactor (AnCMBR) treatment of domestic wastewater for facile and enhanced energy recovery. To this end, the performance of the natural-based ceramic (i.e., pyrophyllite-based) membranes was mainly explored in this study by evaluating filtration and treatment performances. 92.9 ± 5.5% chemical oxygen demand (COD) removal and stable methane production were successfully achieved in a bench-scale AnCMBR while maintaining a slightly long hydraulic retention time (HRT). Comparative filtration experiments with commercialized ceramic membranes suggested that the pyrophyllite-based membrane separation in AnCMBR treatment of wastewater at long HRT is feasible. However, short HRT operations resulted in substantial levels of sludge washout. Future improvements of AnCMBR technology in cost-effective ceramic membrane development, increased flux, and harsh environmental conditions would make AnCMBR competitive with anaerobic membrane bioreactor (AnMBR) technology. Copyright © 2017 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)567-573
JournalChemical Engineering Journal
Volume328
Early online dateJul 2017
DOIs
Publication statusPublished - Nov 2017

Citation

Jeong, Y., Cho, K., Kwon, E. E., Tsang, Y. F., Rinklebe, J., & Park, C. (2017). Evaluating the feasibility of pyrophyllite-based ceramic membranes for treating domestic wastewater in anaerobic ceramic membrane bioreactors. Chemical Engineering Journal, 328, 567-573.

Keywords

  • Anaerobic ceramic membrane bioreactor
  • Ceramic membrane
  • Pyrophyllite-based ceramic membrane
  • Pyrophyllite
  • Domestic wastewater

Fingerprint Dive into the research topics of 'Evaluating the feasibility of pyrophyllite-based ceramic membranes for treating domestic wastewater in anaerobic ceramic membrane bioreactors'. Together they form a unique fingerprint.