Discovering low-rank shared concept space for adapting text mining models

Bo CHEN, Wai LAM, Ivor Wai Hung TSANG, Tak Lam WONG

Research output: Contribution to journalArticlespeer-review

23 Citations (Scopus)


We propose a framework for adapting text mining models that discovers low-rank shared concept space. Our major characteristic of this concept space is that it explicitly minimizes the distribution gap between the source domain with sufficient labeled data and the target domain with only unlabeled data, while at the same time it minimizes the empirical loss on the labeled data in the source domain. Our method is capable of conducting the domain adaptation task both in the original feature space as well as in the transformed Reproducing Kernel Hilbert Space (RKHS) using kernel tricks. Theoretical analysis guarantees that the error of our adaptation model can be bounded with respect to the embedded distribution gap and the empirical loss in the source domain. We have conducted extensive experiments on two common text mining problems, namely, document classification and information extraction, to demonstrate the efficacy of our proposed framework. Copyright © 2013 IEEE.
Original languageEnglish
Pages (from-to)1284-1297
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Issue number6
Publication statusPublished - Nov 2012


Chen, B., Lam, W., Tsang, I. W., & Wong, T.-L. (2012). Discovering low-rank shared concept space for adapting text mining models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(6), 1284-1297. doi: 10.1109/TPAMI.2012.243


Dive into the research topics of 'Discovering low-rank shared concept space for adapting text mining models'. Together they form a unique fingerprint.