Abstract
This paper establishes the Hardy–Littlewood–Pólya inequalities, the Hardy inequalities and the Hilbert inequalities on amalgam spaces. Moreover, it also gives the mapping properties of the Mellin convolutions, the Hadamard fractional integrals and the Hausdorff operators on amalgam spaces. We establish these properties by some estimates for the operator norms of the dilation operators on amalgam spaces. Copyright © 2019 Università degli Studi di Napoli "Federico II".
Original language | English |
---|---|
Pages (from-to) | 661-677 |
Journal | Ricerche di Matematica |
Volume | 68 |
Issue number | 2 |
Early online date | Jan 2019 |
DOIs | |
Publication status | Published - Dec 2019 |
Citation
Ho, K.-P. (2019). Dilation operators and integral operators on amalgam space (Lp, lq). Ricerche di Matematica, 68(2), 661-677. doi: 10.1007/s11587-019-00431-5Keywords
- Amalgam spaces
- Integral operator
- Hardy inequality
- Hilbert inequality
- Hadamard fractional integral
- Mellin convolution
- Hausdorff operator