Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells

Yan Juan GU, Jinping CHENG, Jiefu JIN, Shuk Han CHENG, Wing-Tak WONG

Research output: Contribution to journalArticlespeer-review

89 Citations (Scopus)

Abstract

Single-walled carbon nanotubes (SWNTs) have been identified as an efficient drug carrier. Here a controlled drug-delivery system based on SWNTs coated with doxorubicin (DOX) through hydrazone bonds was developed, because the hydrazone bond is more sensitive to tumor microenvironments than other covalent linkers. The SWNTs were firstly stabilized with polyethylene glycol (H₂N-PEG-NH₂). Hydrazinobenzoic acid (HBA) was then covalently attached on SWNTs via carbodiimide-activated coupling reaction to form hydrazine-modified SWNTs. The anticancer drug DOX was conjugated to the HBA segments of SWNT using hydrazine as the linker. The resulting hydrazone bonds formed between the DOX molecules and the HBA segments of SWNTs are acid cleavable, thereby providing a strong pH-responsive drug release, which may facilitate effective DOX release near the acidic tumor microenvironment and thus reduce its overall systemic toxicity. The DOX-loaded SWNTs were efficiently taken up by HepG2 tumor cells, and DOX was released intracellularly, as revealed by MTT assay and confocal microscope observations. Compared with SWNT-DOX conjugate formed by supramolecular interaction, the SWNT-HBA-DOX featured high weight loading and prolonged release of DOX, and thus improved its cytotoxicity against cancer cells. This study suggests that while SWNTs have great potential as a drug carrier, the efficient formulation strategy requires further study. Copyright © 2011 Gu et al, publisher and licensee Dove Medical Press Ltd.
Original languageEnglish
Pages (from-to)2889-2898
JournalInternational Journal of Nanomedicine
Volume6
Early online date17 Nov 2011
DOIs
Publication statusPublished - 2011

Citation

Gu, Y.-J., Cheng, J., Jin, J., Cheng, S. H., & Wong, W.-T. (2011). Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. International Journal of Nanomedicine, 6, 2889-2898. doi: 10.2147/IJN.S25162

Keywords

  • Carbon nanotubes
  • Drug delivery
  • Controlled release
  • SWNTs

Fingerprint

Dive into the research topics of 'Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells'. Together they form a unique fingerprint.