Abstract
The rise of massive open online courses (MOOCs) brings rich opportunities for understanding learners' experiences based on analyzing learner-generated content such as course reviews. Traditionally, the unstructured textual data is analyzed qualitatively via manual coding, thus failing to offer a timely understanding of the learner’s experiences. To address this problem, this study explores the ability of deep neural networks (DNNs) to classify the semantic content of course review data automatically. Based on 102,184 reviews from 401 MOOCs collected from the Class Central, the present study developed DNN-empowered models to automatically distinguish a group of semantic categories. Results showed that DNNs, especially recurrent convolutional neural networks (RCNNs), achieve acceptable performance in capturing and learning features of course review texts for understanding their semantic meanings. By dramatically lightening the coding workload and enhancing analysis efficiency, the RCNN classifier proposed in this study allows timely feedback about learners’ experiences, based on which course providers and designers can develop suitable interventions to promote MOOC instructional design. Copyright © 2023 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Original language | English |
---|---|
Pages (from-to) | 3953-3991 |
Journal | Education and Information Technologies |
Volume | 29 |
Early online date | Jun 2023 |
DOIs | |
Publication status | Published - Mar 2024 |
Citation
Chen, X., Zou, D., Cheng, G., & Xie, H. (2024). Deep neural networks for the automatic understanding of the semantic content of online course reviews. Education and Information Technologies, 29, 3953-3991. https://doi.org/10.1007/s10639-023-11980-6Keywords
- Course reviews
- Semantic content
- Automatic classification
- Deep neural networks
- xMOOCs