Abstract
The reasonable construction of heterojunction photocatalysts with clear nanostructures and a good interface contact especially the one-dimensional/two-dimensional (1D/2D) composite heterojunction with unique morphology is considered one of the most effective strategies for designing highly efficient photocatalysts. Herein, a series of the 1D β-keto-enamine-based covalent organic framework (COF)/2D g-C₃N₄ composite materials COF–CN (1:x; where 1:x represents the mass ratio of COF and g-C₃N₄, x = 2.5, 5, 10, 15, 20) is prepared through the in situ reaction of 2,4,6-triformylphloroglucinol (Tp) and benzidine (BD) in stripped g-C₃N₄ suspension. A series of characterizations, such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), have verified their 1D/2D heterojunction structure. With the introduction of 1D COF nanobelts, the absorption of the composite is largely extended to 560 nm. Photocatalytic experiments reveal that the composite COF/CN shows evidently superior photocatalytic performance than individual COF and g-C₃N₄. The optimized COF–CN (1:10) exhibits a H2 production rate of 12.8 mmol g–1·h–1 under visible-light (λ ≥ 420 nm) irradiation, which is about 62 and 284 times higher than those of COF and g-C₃N₄, respectively. The apparent quantum efficiency (AQE) of COF–CN (1:10) is about 15.09% under 500 nm light irradiation, which is one of the highest among previous COF- or g-C₃N₄-based materials. This work provides important strategies for designing and constructing high-efficiency heterojunction photocatalysts with multidimensional features. Copyright © 2020 American Chemical Society.
Original language | English |
---|---|
Pages (from-to) | 51555-51562 |
Journal | ACS applied materials & interfaces |
Volume | 12 |
Issue number | 46 |
Early online date | 06 Nov 2020 |
DOIs | |
Publication status | Published - 18 Nov 2020 |
Citation
Xing, Y., Yin, L., Zhao, Y., Du, Z., Tan, H.-Q., Qin, X., . . . Li, Y.-G. (2020). Construction of the 1D covalent organic framework/2D g-C₃N₄ heterojunction with high apparent quantum efficiency at 500 nm. ACS applied materials & interfaces, 12(46), 51555-51562. doi: 10.1021/acsami.0c15780Keywords
- Graphitic carbon nitride
- Covalent organic frameworks
- Heterojunction
- Photocatalysis
- Hydrogen production
- PG student publication