Abstract
Energy landscapes are high-dimensional surfaces underlie all physical systems, which determine crucially the energetic and behavioral dependence of the systems on variable configurations, but are difficult to be analyzed due to their high-dimensional nature. Here we introduce an approach to reveal for the complete energy landscapes of spin glasses and Boolean satisfiability problems with a small system size, and unravels their non-equilibrium dynamics at an arbitrary temperature for an arbitrarily long time. Remarkably, our results show that it can be less likely for the system to attain ground states when temperature decreases, due to trapping in individual local minima, which ceases at a different time, leading to multiple abrupt jumps in the ground-state probability. For large systems, we introduce a variant approach to extract partially the energy landscapes and observe both semi-analytically and in simulations similar phenomena. This work introduces new methodology to unravel the energy landscapes and non-equilibrium dynamics of glassy systems, and provides us with a clear, complete and new physical picture on their long-time behaviors inaccessible by existing approaches. Copyright © 2024 The Author(s).
Original language | English |
---|---|
Article number | 15675 |
Journal | Scientific Reports |
Volume | 14 |
DOIs | |
Publication status | Published - Jul 2024 |