Abstract
There are two main approaches for scene classification: holistic and object-based. Holistic approach is good at representing scenes with simple content. However, since it does not take into account the internal object relationship, holistic approach does not well characterize complex scenes with multiple objects. By contrast, object-based approach estimates the scene class by analyzing the object co-occurrence information, as a result of which it is advantageous in characterizing scenes with complex content. But object-based approach is not good at classifying simple scenes. In this paper, we combine holistic and object-based approaches for scene classification. The proposed combinatory approach is able to take advantages of the two approaches. Several state-of-the-art holistic and object-based approaches are compared. The experiments conducted on a widely-used scene dataset demonstrate the superiors performance of the combinatory approach. Copyright © 2012 IEEE.
Original language | English |
---|---|
Title of host publication | ISCID 2012: 2012 Fifth International Symposium on Computational Intelligence and Design |
Place of Publication | Los Alamitos |
Publisher | IEEE Computer Society |
Pages | 65-68 |
Volume | 1 |
ISBN (Electronic) | 9780769548111 |
ISBN (Print) | 9781467326469 |
DOIs | |
Publication status | Published - 2012 |
Citation
Chen, Z., Chi, Z., Fu, H., & Feng, D. (2012). Combining holistic and object-based approaches for scene classification. In ISCID 2012: 2012 Fifth International Symposium on Computational Intelligence and Design (Vol. 1, pp 65-68). Los Alamitos: IEEE Computer Society.Keywords
- Scene classification
- Holistic approach
- Object-based approach
- Spatial pyramid matching (SPM)
- CENTRIST