Abstract
The golden birdwing Troides aeacus (Lepidoptera, Papilionidae), a significant species in Asia, faces habitat loss due to urbanization and human activities, necessitating its protection. However, the lack of genomic resources hinders our understanding of their biology and diversity, and impedes our conservation efforts based on genetic information or markers. Here, we present the first chromosomal-level genome assembly of T. aeacus using PacBio SMRT and Omni-C scaffolding technologies. The assembled genome (351 Mb) contains 98.94% of the sequences anchored to 30 pseudo-molecules. The genome assembly has high sequence continuity with contig length N50 = 11.67 Mb and L50 = 14, and scaffold length N50 = 12.2 Mb and L50 = 13. A total of 24,946 protein-coding genes were predicted, with high BUSCO score completeness (98.8% and 94.7% of genome and proteome BUSCO, respectively. This genome offers a significant resource for understanding the swallowtail butterfly biology and carrying out its conservation. Copyright © 2024 GigaScience Press. All rights reserved.
Original language | English |
---|---|
Journal | GigaByte |
Early online date | Apr 2024 |
DOIs | |
Publication status | E-pub ahead of print - Apr 2024 |