Calderón–Zygmund operators, Bochner–Riesz means, and parametric Marcinkiewicz integrals on Hardy–Morrey spaces with variable exponents

Research output: Contribution to journalArticlespeer-review

2 Citations (Scopus)

Abstract

We obtain the boundedness of Calderón–Zygmund operators on the entire Hardy–Morrey spaces with variable exponents. We obtain this result by refining the extrapolation theory. This refined extrapolation theory also gives the boundedness of Fourier multipliers, Bochner–Riesz means, and parametric Marcinkiewicz integrals on Hardy–Morrey spaces with variable exponents. Copyright © 2023 by Kyoto University.
Original languageEnglish
Pages (from-to)335-351
JournalKyoto Journal of Mathematics
Volume63
Issue number2
Early online dateFeb 2023
DOIs
Publication statusPublished - May 2023

Citation

Ho, K.-P. (2023). Calderón–Zygmund operators, Bochner–Riesz means, and parametric Marcinkiewicz integrals on Hardy–Morrey spaces with variable exponents. Kyoto Journal of Mathematics, 63(2), 335-351. doi: 10.1215/21562261-10428475

Keywords

  • Bochner–Riesz means
  • Calderón–Zygmund operators
  • Fourier multipliers
  • Hardy space
  • Morrey spaces
  • Parametric Marcinkiewicz integrals
  • Variable exponent

Fingerprint

Dive into the research topics of 'Calderón–Zygmund operators, Bochner–Riesz means, and parametric Marcinkiewicz integrals on Hardy–Morrey spaces with variable exponents'. Together they form a unique fingerprint.