Abstract
We present a general purpose blind image quality assessment (IQA) method using the statistical independence hidden in the joint distributions of divisive normalization transform (DNT) representations for natural images. The DNT simulates the redundancy reduction process of the human visual system and has good statistical independence for natural undistorted images; meanwhile, this statistical independence changes as the images suffer from distortion. Inspired by this, we investigate the changes in statistical independence between neighboring DNT outputs across the space and scale for distorted images and propose an independence uncertainty index as a blind IQA (BIQA) feature to measure the image changes. The extracted features are then fed into a regression model to predict the image quality. The proposed BIQA metric is called statistical independence (STAIND). We evaluated STAIND on five public databases: LIVE, CSIQ, TID2013, IRCCyN/IVC Art IQA, and intentionally blurred background images. The performances are relatively high for both single- and cross-database experiments. When compared with the state-of-the-art BIQA algorithms, as well as representative full-reference IQA metrics, such as SSIM, STAIND shows fairly good performance in terms of quality prediction accuracy, stability, robustness, and computational costs. Copyright © 2015 SPIE and ISandT.
Original language | English |
---|---|
Article number | 063008 |
Journal | Journal of Electronic Imaging |
Volume | 24 |
Issue number | 6 |
Early online date | 23 Nov 2015 |
DOIs | |
Publication status | Published - Nov 2015 |