Bergman projections, Berezin transforms and Cauchy transform on exponential Orlicz spaces and Lorentz-Zygmund spaces

Research output: Contribution to journalArticlespeer-review

1 Citation (Scopus)

Abstract

We establish the mapping properties of the Bergman projections, the harmonic Bergman projections, the Cesáro operator and the Hilbert matrix on exponential Orlicz spaces and Zygmund spaces. We also have the mapping properties of the Berezin transform on Zygmund spaces. A sharpened result for the mapping properties of the Cauchy transform from the Lebesgue spaces to space of bounded function is also obtained. Copyright © 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Original languageEnglish
Pages (from-to)511-525
JournalMonatshefte fur Mathematik
Volume199
Issue number3
Early online date12 Aug 2022
DOIs
Publication statusPublished - Nov 2022

Citation

Ho, K.-P. (2022). Bergman projections, Berezin transforms and Cauchy transform on exponential Orlicz spaces and Lorentz-Zygmund spaces. Monatshefte fur Mathematik, 199(3), 511-525. doi: 10.1007/s00605-022-01757-3

Keywords

  • Bergman projections
  • Berezin transforms
  • Hilbert matrix
  • Cesáro operator
  • Cauchy transform
  • Exponential Orlicz spaces
  • Lorentz-Zygmund space

Fingerprint

Dive into the research topics of 'Bergman projections, Berezin transforms and Cauchy transform on exponential Orlicz spaces and Lorentz-Zygmund spaces'. Together they form a unique fingerprint.