Abstract
We establish the mapping properties of the Bergman projections, the harmonic Bergman projections, the Cesáro operator and the Hilbert matrix on exponential Orlicz spaces and Zygmund spaces. We also have the mapping properties of the Berezin transform on Zygmund spaces. A sharpened result for the mapping properties of the Cauchy transform from the Lebesgue spaces to space of bounded function is also obtained. Copyright © 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Original language | English |
---|---|
Pages (from-to) | 511-525 |
Journal | Monatshefte fur Mathematik |
Volume | 199 |
Issue number | 3 |
Early online date | 12 Aug 2022 |
DOIs | |
Publication status | Published - Nov 2022 |
Citation
Ho, K.-P. (2022). Bergman projections, Berezin transforms and Cauchy transform on exponential Orlicz spaces and Lorentz-Zygmund spaces. Monatshefte fur Mathematik, 199(3), 511-525. doi: 10.1007/s00605-022-01757-3Keywords
- Bergman projections
- Berezin transforms
- Hilbert matrix
- Cesáro operator
- Cauchy transform
- Exponential Orlicz spaces
- Lorentz-Zygmund space