Automated student classroom behaviors’ perception and identification using motion sensors

Hongmin WANG, Chi GAO, Hong FU, Christina Zong-Hao MA, Quan WANG, Ziyu HE, Maojun LI

Research output: Contribution to journalArticlespeer-review

1 Citation (Scopus)


With the rapid development of artificial intelligence technology, the exploration and application in the field of intelligent education has become a research hotspot of increasing concern. In the actual classroom scenarios, students’ classroom behavior is an important factor that directly affects their learning performance. Specifically, students with poor self-management abilities, particularly specific developmental disorders, may face educational and academic difficulties owing to physical or psychological factors. Therefore, the intelligent perception and identification of school-aged children’s classroom behaviors are extremely valuable and significant. The traditional method for identifying students’ classroom behavior relies on statistical surveys conducted by teachers, which incurs problems such as being time-consuming, labor-intensive, privacy-violating, and an inaccurate manual intervention. To address the above-mentioned issues, we constructed a motion sensor-based intelligent system to realize the perception and identification of classroom behavior in the current study. For the acquired sensor signal, we proposed a Voting-Based Dynamic Time Warping algorithm (VB-DTW) in which a voting mechanism is used to compare the similarities between adjacent clips and extract valid action segments. Subsequent experiments have verified that effective signal segments can help improve the accuracy of behavior identification. Furthermore, upon combining with the classroom motion data acquisition system, through the powerful feature extraction ability of the deep learning algorithms, the effectiveness and feasibility are verified from the perspectives of the dimensional signal characteristics and time series separately so as to realize the accurate, non-invasive and intelligent children’s behavior detection. To verify the feasibility of the proposed method, a self-constructed dataset (SCB-13) was collected. Thirteen participants were invited to perform 14 common class behaviors, wearing motion sensors whose data were recorded by a program. In SCB-13, the proposed method achieved 100% identification accuracy. Based on the proposed algorithms, it is possible to provide immediate feedback on students’ classroom performance and help them improve their learning performance while providing an essential reference basis and data support for constructing an intelligent digital education platform. Copyright © 2023 by the authors.
Original languageEnglish
Article number127
Issue number2
Publication statusPublished - Jan 2023


Wang, H., Gao, C., Fu, H., Ma, C. Z.-H., Wang, Q., He, Z., & Li, M. (2023). Automated student classroom behaviors’ perception and identification using motion sensors. Bioengineering, 10(2). Retrieved from


  • intelligent systems
  • Deep learning
  • Classroom behavior
  • Motion identification


Dive into the research topics of 'Automated student classroom behaviors’ perception and identification using motion sensors'. Together they form a unique fingerprint.