Abstract
Recommender systems typically store personal preference profiles. Many items in the profiles can be represented by numerical attributes. However, the initial profile of each user is incomplete and imprecise. One important problem in the development of these systems is how to learn user preferences, and how to automatically adapted update the profiles. To address this issue, this paper presents an unsupervised approach for learning user preferences over numeric attributes by analyzing the interactions between users and recommender systems. When a list of recommendations shown to a target user, the favorite item will be selected by him/her, then the selected item and the over-ranked items will be employed as valuable feedback to learn the user profile. Specifically, two contributions are offered: 1), a learning approach to measure the influence of over-ranked items through analysis of user feedbacks and 2), a weighting algorithm to calculate weights of different attributes by analyzing user selections. These two approaches are integrated into a traditional adaption model for updating user preference profile. Extensive simulations and results show that both approaches are more effective than existing approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 114-126 |
Journal | Knowledge-Based Systems |
Volume | 112 |
Early online date | Sept 2016 |
DOIs | |
Publication status | Published - Nov 2016 |