縱向約束視角下微博反腐的互動邏輯: 結合大資料與深度案例的探索

吳玉潔, 肖漢宇

Research output: Contribution to journalArticlespeer-review

Abstract

微博反腐是中國制度反腐的重要補充。 近年來, 隨著被微博曝光的腐敗問題複雜性增加,資訊失真更容易發生, 以致民眾的負面情緒更容易爆發。 這對政府的腐敗治理提出了新的挑戰與要求,但是學界對微博反腐的新特徵仍然認識不足。 以縱向約束理論為視角,並利用大資料分析方法來深度剖析“ 北極鯰魚” 案例, 可以揭示微博反腐的新特徵。 在微博反腐的初期, 地方政府的及時回應能夠有效降低議題熱度; 但是進入中期,地方政府的模糊回應會激發民眾的不滿情緒與非理性評論, 而中央媒體則積極引導民眾互動;進入尾期,中央媒體與民眾互動加強,可以促進地方政府回應。 在一體推進不敢腐、不能腐、不想腐的大背景下, 各級政府應根據微博反腐的新特徵, 積極處理微博反腐的負面輿情,構建國家與網路社會之間的良性互動。
Cyber anti-corruption, an important supplementary anti-corruption channel in China, has recently developed new features. The problem exposed is increasingly complex and multifaceted. Netizens become more polarized, and it is easy to trigger social resentment. While cyber anti-corruption has been a new challenge for the government, little is known about its new development and features. We employ a vertical accountability perspective and a machinelearning approach to analyze big data from Weibo texts, by analyzing the Beiji Nianyu case. Local government′ s quick responses can relieve citizens′ concerns and attention during the opinion expression period. Nevertheless, in the second stage, local government′ s implicit responses may trigger citizens′ dissatisfaction and irrational behaviors, while central media may proactively interact with citizens. Central media strengthen the interactions with citizens at the peak, increasing local government′s responsiveness. It uncovers the complicated interactions of the central and local governments and citizens, and provides practical implications for local governments to enhance their governance in cyber anti-corruption. Copyright © 2024 廣州大學學報(社會科學版) 编辑部.
Original languageChinese (Simplified)
Pages (from-to)65-82
Journal廣州大學學報(社會科學版)
Volume23
Issue number4
Publication statusPublished - Jul 2024

Citation

吳玉潔和肖漢宇(2024):縱向約束視角下微博反腐的互動邏輯: 結合大資料與深度案例的探索,《廣州大學學報(社會科學版)》,23(4),頁65-82。

Keywords

  • 微博反腐
  • 政府回應
  • 社會問責
  • 大數據
  • Weibo anti-corruption
  • Government responsivenss
  • Social accountability
  • Big data
  • Alt. title: The interactive logic of Weibo anti-corruption from a vertical accountability perspective: A machine-learning analysis of big data